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On Algebraic Number Fields whose
Class Numbers are Multiples of 3

Dedicated to Professor S. Tomatsu on his 60th birthday

Kiichiro OHTA

Dept. of Math., Fac. of Gen. Educ., Gifu Univ.

(Received Oct. 5, 1981)

§1. Introduction

As usual we denote by Z and Q the ring of rational integers and the rational number
field respectively.

T. Honda proved in 1967 the following theorem (cf. (1)) by means of dealing with the
monic irreducible polynomials of degree 3 in Z(X) such that each of their splitting fields
is unramified over its quadratic subfield respectively. Namely;

Tueorem. (Honda) Set K(m, n)= QW 4m®>—27n2) for m,n€Z. If (m, 3n)=1 and if m can-
not be repreéented in a form (n+k3)/h with h€Z, the class number of K(m, n) is a multiple
of 3.

In this paper, using the solvability of the alternative group As of degree 4, we shall prove
in general that algebraic number fields of degree n!/12 of certain type, where n=4, have
class numbers which are always divisible by 3 (Theorem 1). Moreover, considering the spe
cial case where n=4, we shall give the quadratic number fields of another type such that

their class numbers are also multiples of 3 (Theorem 4).
§ 2. Main theorems

Let K be an algebraic number field. In following we shall say that K is an Ss-extension
of Q if the Galois group G(K/Q) is isomorphic to the symmetric group S. of degree n.

THeEOREM 1. Let f(X) be a monic irreducible polynomial of degree, n=4 in Z(X), whose
roots and discriminant we denote by 61, ..., 6. and D respectively. Moreover, let K be the
splitting field of f(X) and suppose that K is an Sn-extension of Q. If there exist no prime
ideals in K whose ramification indexes with respect to Q are multiples of 3, then the class
number of the field F=QW/D, 81, ... , 6u-4) (if n=4, then F=Q(/D))is a multiple of 3.
Proor. It is clear from our assumption that the Galois group G(K/F) is isomorphic to the
alternative group As of degree 4. Hence, it fcllows immediately from the solvability of A4

that there exists an intermediate field L. between F and K such that L/F is an abelian exten-
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sion of degree 3. Now, from our assumption it follows immediately that L is unramified over
F, and this implies that the class number of F is a multiple of 3. g.e. d.

It is known that there exist polynomials of several types in Z(X) such that each of their
splitting fields has no finite prime ideals which ramify over the quadratic subfield (cf. (2),
(3) and (4)).If we apply Theorem 1 to these polynomials, then we have immediately the fol-
lowing theorem; _

TueoreM 2. Let notations be as in Theorem 1 and suppose K is an Sa-extension of Q.
If f(X) is any one of the following;

1) fX)=X*—aX+b, where ((n—1)a, nb)=1,

(2) fX)=X"—aX?+b, where 2(n—2)a, nb)=1,

(3) f(X)éX"—aX‘il, where (n, sln—s)a)=1,

(4) fX)=X—aF(X—b}+x1, where s+t=n and (n, bs+al)=1,

then the class number of the field F= Q(/D, 61, ... . Ou—a)(if n=4, then F=QKD))is al-
ways divible by 3.

Proor. Since there exist no finite prime ideals in K which ramify in K/Q(/D) in every
case in our theorem {(cf, (2], (3) and (4)), our assertion follows immediately from Theorem
1. q. e d.

Now, we shall show that we can extend the polynomials of types (1), (2) and (3) in The-
orem 2 to the Eisenstein polynomials respectively. Namely, we have the following;

TueoREM 3. Let notations be as in Theorem 1. Moreover, let p1, ... pr be prime numbers
different from each other and a1, ... , ar be positive inlegers. Suppose K is an Sn~extension
of Q. If f(X) is any one of the following;

(5) f(X)=X"—api”...p" X+bpr. .. pr, where (3nab, pr...p)=1 and ((n— 1, nb)=1,

6) fX)=X"—ap...p>" X2+ bp1. .. pr, where (3nab, p1...p)=1 and 2n—2)a, nb)=1,

(1) fX)=X"—apt™. .. p X +p1...pr, where 3na, p1...p)=1 and (n, s(n—s)a)=1,

then the class number of the field F=QK'D, 61, ... , On-a)(if n=4, then F=QWD)) is al-
ways divible by 3. '

Proor. We denote by p any one of prime numbers p1,... , pr and let P and P be prime
ideals in K and k=Q(61) respectively such that we have P|(p) and B[p. Since f(X) is an
Eisenstein polynomial with respect to prime number p, it is well known that we have ()=
p". Hence, if we suppose P¢| (p), then we have nle clearly. Now, we denote by T and V
the inertial field and the first ramification field of P in K/Q respectively and we set pv=
(K:V), where v=0, and eo={(V:T) respectively. Then, as we have e=eop”*, (e0, p)=1 and
moreover (p, n)=1 in our case, it follows n|es clearly. Since the Galois group G(V/T) is a
cyclic group with order eo, it is easily seen that  there exists an element of G(K/Q) whose
order is eo. But, since the Galois group G(K/Q) is isomorphic to the symmetric group Sn
of degree m, it follows easily that there exists no element of G(K/Q) whose order is a prop-
er multiple of n. Hence, we must have eo=n. Moreover, if ¥ ramifies in K/F, then the ram-
ification index of B in K/F must be a power of p because we have kCF and (p)=y". Hen-
ce, if the ramification index of 8 in K/F is divisible by 3; then we must have p=3. But in
our case we have p#3 from our assumption. Thus, if we denote by L the intermediate fie-

1d between F and K which is an abelian extension of degree 3 over F, then the factor of (p)
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in L is unramified in L/F clearly.

Finally, for any prime number ¢ different from p: (i=1,..., r) we can easily verify that
every prime factor of (g) in K is unramified in K/F, because as in cases (1), (2) and (3) in
Theorem 2 every prime factor of (g) in K is unramified in K/Q(/D).

§3. The case n=4

Now, we shall deal with the case where n=4 in (5). It is easily seen that the discriminant
of polynomial f(X)=X*—ax+b is equal to D=4*p>—3%*. Using this we can prove the fol-
lowing theorem. Namely;

TueorEM 4. Let a and b be rational integers and pi, ..., pr be prime numbers different
from each other such that we have (6ab, p1...p-)=1 and (3a, 4b)=1. Moreover, let ai, ...,

ar be positive integers. If we have either

apt. .. pr=%1 (mod 3)
(8)

bpr... pr=1 (mod 3)
or

apt’. .. pr=x2 (mod 5)
9

bpl «v. Pr =] (mod 5)’

then the class number of the quadratic number field
F=QWpr. . pr @53 =33 pl 5 pr )
s divisible by 3.
Proor. Set f(X)=X*+api"... pr X+bp1... pr, where we suppose (6ab, p1... pr)=1 and
(3a, 4b)=1, then the discriminant of f(X) is D=(p1... p-)} (@*63—33a*pt “ 3. .. pt*3) clear-
ly. If the splitting field K of f(X) is an Ss-extension of Q, then our assertion follows imme-

diately from Theorem 3. Hence, we have only to prove that K is an Si-extension of Q in
our cases.
(a) Case (8)
we have either
X=X —X+I1=X+1DX3—X*+X+1)  (mod 3)
or _
SXO=X 4 X+1=X—DXC+X2+X—1)  (mod 3
and both X®—X?+X+1 and X®*+X%2+X—1 are irreducible with respect to mod 3. More-
over D is prime to 3 clearly. From these facts we can easily prove that the Galois group
G(K/Q) contains an element of order 3. On the other hand, as the ramificatinn index of each
factor of (pi) in K with respect to Q is equal to 4 clearly, it is easily seen that G(K/Q) con-
tains an element whose order is 4. Now, from these facts it follows immediately that G(K/Q)
is isomorphic to Si.
(b) case (9)
we have either
X=X —2X+1=X—-DX3*+X*+X—1) (mod 5)
or
X=X 42X+ 1=X+ DX —X*+X+1)  mod 5)
and both X3+X24+X—1 and X®—X%2+X+1 are irreducible with respect to mod 5. Moreo-
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ver, it is easily seen that D is not divisible by 5 because we have D=—1 (mod 5). From
these facts we can easily prove that G(K/Q) is isomorphic to S4 as well as in case (8).
p. e. b.
Example 1. If f(X)=X*+7X+7, then we have Q(/D)=Q(/469), whose class number is 3.
Example 2. If f(X)=X*—13X+26,then we have Q(/D)=Q(/2201), whose class number
is 6.

§ 4. The case n=5

Finally, we shall deal with the case where n=5. in (5) and (6). Namely, we have the fol-
lowing theorem.

TueoreM 5. Let f(X) be a monic irreducible polynomial of degree 5 in Z(X), whose root
and discriminant we denoteo and D respectively. Moreover, let a and b be integers and p1,...;
pr be prime numbers different from each other such that we have (15ab, p1... p,)=1 and 6a,
5b)=1. If we have either
10 fX)=X°—api"... o X+bpi... pr, where a1, ..., ar are positive integers and api’: ..
pr=—2 (mod 17), bpr... p-=1 (mod 17),
or
(11) fX)=X°—api... pr" X2+bp1... pr, where ai, ..., ar are positive integers and either
apt'. .. pF=bpr... pp=—1 (mod 3) or apt'... pr'=—1 (mod 17) and bp1... pr=1(mod
17), then the class number of the field F=Q(/D, 6) is divisible by 3.

Proor. We denote by K the spitting field of f(X). From Theorem 3 we have only to prove
that K is an Ss-extension of Q. But this is done for both cases in (4) and (2) respectively.
Namely, for case (10) we have

fX)=(X?+9X+10)(X®+8X*+3X+12)  (mod 17)
and this implies that the Galois group G(K/ Q) contains a transposition and hence G(K/Q) is
isomorphic to Ss clearly. For case (11) we have either

fX)=X2—X+1DX*+X2—X+1)  (mod 3)
or

X=X+ X+3)X3—X*—2X+6) (mod 17)

and hence it is easily seen that G(K/Q) is isomorphic to S5 as well as in case (10).
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