

Title	On the Galois cohomology groups of algebraic tori and Hasse's norm theorem
Author(s)	AMANO, Kazuo
Citation	[岐阜大学教養部研究報告] vol.[13] p.[185]-[190]
Issue Date	1977
Rights	
Version	岐阜大学教養部 (Dep. of Math., Fac. of Gen. Educ., Gifu Univ.)
URL	http://hdl.handle.net/20.500.12099/47402

この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

On the Galois cohomology groups of algebraic tori and Hasse's norm theorem

Kazuo Amano

Dep. of Math., Fac. of Gen. Educ., Gifu Univ.

(Received Oct. 15, 1977)

§1. INTRODUCTION

Let k be an algebraic number field of finite degree and K a finite Galois extension of k with Galois group \mathfrak{G} . It is wellknown as the generalization of Hasse's norm theorem that, if we denote by $\widetilde{N}(k)$ the subgroup of the multiplicative group k^{\times} of k consisting of elements which are local norm from K at every places of k, then the group $\widetilde{N}(k)/N_{K/k}K^{\times}$ is isomorphic to a factor group of $\hat{H}^{-3}(\mathfrak{G}, Z)$.

The purpose of the present paper is to generalize this theorem to the case of an algebraic torus T defined over k which splits over K.

§2. GALOIS COHOMOLOGY OF TOR!

2.1 Let T_K be the group of K-rational points of T and T_{A_K} the adele group of T over K. We denote by $X = Hom(G_m, T)$ the set of morphisms of G_m into T defined over K and which are also group homomorphisms, where G_m is the multiplicative group of universal domain. We let \mathfrak{G} operate on X by the rule (s.f)(s.t) = s(f(t)) for $s \in \mathfrak{G}$, $f \in X$, and $t \in T$. Then it is wellknown that $T_K \cong X \otimes K^*$ and $T_{A_K} \cong X \otimes J_K$ as \mathfrak{G} -modules, where J_K is the idele group of K. Denoting by $C_K = J_K/K^*$ the idele class group of K, we have the exact sequence of \mathfrak{G} -modules since X is Z-free; $o \longrightarrow X \otimes K^* \longrightarrow X \otimes J_K \longrightarrow X \otimes C_K \longrightarrow o$ and hence we can identify $X \otimes C_K$ with T_{A_K}/T_K as \mathfrak{G} -modules. Putting $C_K(T) = T_{A_K}/T_K$, we call $C_K(T)$ the adele class group of T over K. Then the cup multiplication by the canonical class of \hat{H}^2 (\mathfrak{G}, C_K) induces an isomorphism \hat{H}^n $(\mathfrak{G}, C) \cong \hat{H}^{n+2}(\mathfrak{G}, C_K(T))$ for every integers n [5].

Analogous result in the local field is the following. Let $\mathfrak p$ be a place in k and $\mathfrak P$ a place over $\mathfrak p$ in K. We denote by $k_{\mathfrak p}$ and $K_{\mathfrak P}$ the completions of k and K by the places, respectively, and by $\mathfrak G_{\mathfrak P}$ the Galois group of $K_{\mathfrak P}/k_{\mathfrak P}$. Then the group $T_{K_{\mathfrak P}}$ of $K_{\mathfrak P}$ -rational points of $K_{\mathfrak P}$ is isomorphic to $K_{\mathfrak P}$ as $\mathfrak G_{\mathfrak P}$ -module and the cup multiplication by the canonical class $\alpha_{\mathfrak P}$ of $\hat{H}^2(\mathfrak G_{\mathfrak P},K_{\mathfrak P}^\times)$ induces an isomorphism $\hat{H}^n(\mathfrak G_{\mathfrak P},K)\cong \hat{H}^{n+2}(\mathfrak G_{\mathfrak P},K_{\mathfrak P}^\times)$ for every integers n [3].

2.2 J. Tate showed the following results in [9]. Let Y be the free abelian group generated by the places $\mathfrak P$ of K. An element $s\in \mathfrak G$ operates on Y by the rule $s(\sum\limits_{\mathfrak P}n_{\mathfrak P}\mathfrak P)=\sum\limits_{\mathfrak P}n_{\mathfrak P}(s\mathfrak P)$. We denote by W the kernel of surjective $\mathfrak G$ -homomorphism $Y\longrightarrow Z$ defined by $\sum\limits_{\mathfrak P}n_{\mathfrak P}\mathfrak P\longrightarrow \sum\limits_{\mathfrak P}n_{\mathfrak P}$. Then the cup multiplication by the canonical classes $\alpha_1\in \hat H^2$ ($\mathfrak G$, $Hom(Z,C_K)$), $\alpha_2\in \hat H^2$ ($\mathfrak G$, $Hom(Y,J_K)$) and $\alpha_3\in \hat H^2$ ($\mathfrak G$, $Hom(W,K^\times)$) gives isomorphisms

$$\hat{H}^{n}(\mathfrak{G}, X \otimes Z) \cong \hat{H}^{n+2}(\mathfrak{G}, X \otimes C_{K}),$$

$$\hat{H}^{n}(\mathfrak{G}, X \otimes Y) \cong \hat{H}^{n+2}(\mathfrak{G}, X \otimes J_{K}),$$

$$\hat{H}^{n}(\mathfrak{G}, X \otimes W) \cong \hat{H}^{n+2}(\mathfrak{G}, X \otimes K^{\times});$$

moreover there exists a commutative diagram with exact rows:

2.3 We recall the semi-local theory which occurs often in the present paper. Let H be a subgroup of a finite group G and $G = \bigcup_g gH$ a left coset decomposition. Let A be a G-module, B an H-module and $A \xrightarrow{j} B$ a pair of H-homomorphisms such that $j^{\circ}i$ is the identity on B and $A = \sum_g gi(B)$, direct sum. Then for any G-module M, we have an isomorphism

$$\begin{array}{l} M \, \otimes \, A \cong \sum\limits_{g} M \, \otimes \, gi(B) \\ \\ \cong \sum\limits_{g} g(1 \, \otimes \, i) \, (M \, \otimes \, B) \end{array}$$

and the two maps

$$\hat{H}^{n}\left(G,\ M\ \otimes\ A\right)\xrightarrow{(1\ \otimes\ j)\,\mathrm{res}}\ \hat{H}^{n}\left(H,M\ \otimes\ B\right)$$

are mutually inverse isomorphisms, where "res" denotes restriction map and "cor" denotes corestriction map.

2.4 If \mathfrak{S} is a finite set of places \mathfrak{P} in k, we also denote by the same symbol \mathfrak{S} the set of the places \mathfrak{P} of K which divide some place $\mathfrak{P} \in \mathfrak{S}$. Putting $T_{A_K}^{\mathfrak{S}} = \prod_{\mathfrak{P} \in \mathfrak{P}} T_{K\mathfrak{P}} \times \prod_{\mathfrak{P} \in \mathfrak{P}} T_{\mathfrak{P}_{\mathfrak{P}}}$, the adele group T_{A_K} of T is defined as the inductive limit of $T_{A_K}^{\mathfrak{S}}$ relative to \mathfrak{S} , where $T_{\mathfrak{S}_{\mathfrak{P}}} = X \otimes \mathfrak{U}_{\mathfrak{P}}$ is the unit group of $K_{\mathfrak{P}}$. Since $T_{K\mathfrak{P}} = X \otimes K_{A_K}^{\mathfrak{S}}$, we have $T_{A_K}^{\mathfrak{S}} = \prod_{\mathfrak{P} \in \mathfrak{S}} \prod_{\mathfrak{P}_{\mathfrak{P}}} X \otimes K_{\mathfrak{P}}^{\times} \times \prod_{\mathfrak{P} \in \mathfrak{S}} \prod_{\mathfrak{P}_{\mathfrak{P}}} X \otimes \mathfrak{U}_{\mathfrak{P}}$. For each \mathfrak{P} of K, we denote by $i_{\mathfrak{P}} \colon K_{\mathfrak{P}}^{\times} \longrightarrow J_{K}$ the canonical $\mathfrak{G}_{\mathfrak{P}}$ -injection which maps a non zero element of $K_{\mathfrak{P}}$ onto the idele having that element as \mathfrak{P} -component and having 1 as components at all places other than \mathfrak{P} . Since \mathfrak{G} , $\mathfrak{G}_{\mathfrak{P}}$, $\prod_{\mathfrak{P}} K_{\mathfrak{P}}^{\times}$ (resp. $\prod_{\mathfrak{P}_{\mathfrak{P}}} \mathfrak{U}_{\mathfrak{P}}$), and $K_{\mathfrak{P}}^{\times}$ (resp. $\mathfrak{U}_{\mathfrak{P}}$) satisfy the conditions of semi-

local theory, we have

$$\hat{H}^n$$
 (\mathfrak{G} , $X \otimes \prod_{\mathfrak{P} \mid \mathfrak{p}} K_{\mathfrak{P}}^{\times}$) $\cong \hat{H}^n$ ($\mathfrak{G}_{\mathfrak{P}}$, $X \otimes K_{\mathfrak{P}}^{\times}$),

$$\hat{H}^{n}\left(\mathfrak{G},\;X\otimes_{\mathfrak{P}\mid\mathfrak{v}}\mathfrak{ll}_{\mathfrak{P}}\right)\cong\hat{H}^{n}\left(\mathfrak{G}_{\mathfrak{P}},\;X\otimes\mathfrak{ll}_{\mathfrak{P}}\right)$$

for any fixed prime $\mathfrak P$ dividing $\mathfrak p$. Since $\mathfrak U_{\mathfrak P}$ is cohomologically trivial if $K_{\mathfrak P}$ is unramified over $k_{\mathfrak P}$, $X\otimes \mathfrak U_{\mathfrak P}$ is also cohomologically trivial by the theory of local fields. Therefore, if our set $\mathfrak S$ contains all places $\mathfrak P$ of k which ramify in K, we have

$$\begin{split} \hat{H}^{n}\left(\mathfrak{G},\ T_{\Lambda_{K}}^{\tilde{z}}\right) & \cong \prod_{v \in \tilde{z}} \hat{H}^{n}\left(\mathfrak{G},\ \prod_{\mathfrak{A} \mid v} T_{\Lambda_{\mathfrak{A}}}\right) \\ & \cong \prod_{v \in \tilde{z}} \hat{H}^{n}(\mathfrak{G}_{\mathfrak{A}},\ T_{\Lambda_{\mathfrak{A}}}). \end{split}$$

Passing to the inductive limit over sufficiently large Ξ , we have

$$\begin{split} \widehat{H}^{n}\left(\mathfrak{G},\ T_{\Lambda_{K}}\right) & \cong \varinjlim_{\widehat{\mathfrak{S}}} \ \widehat{H}^{n}\left(\mathfrak{G},\ T_{\Lambda_{K}}^{\widehat{\mathfrak{S}}}\right) \\ & \cong \sum \widehat{H}^{n}\left(\mathfrak{G}_{\mathfrak{F}},\ T_{K_{\mathfrak{F}}}\right). \end{split}$$

Therefore we have the following

Proposition 1. $\hat{H}^n(\mathfrak{G}, T_{A_K}) \cong \sum_{k} \hat{H}^n(\mathfrak{G}_{\mathfrak{F}}, T_{K_{\mathfrak{F}}})$ for every integers n.

2.5 Putting $Y_{\mathfrak{v}} = \sum_{\mathfrak{V} \in \mathcal{V}} Z\mathfrak{P}$, we have $Y = \sum_{\mathfrak{v}} Y_{\mathfrak{v}}$ (direct) as \mathfrak{G} -module. Accordingly we have $X \otimes Y = \sum_{\mathfrak{v}} (X \otimes Y_{\mathfrak{v}})$ as \mathfrak{G} -module. For each place \mathfrak{P} of K, we define a $\mathfrak{G}_{\mathfrak{F}}$ -homomorphism $i'_{\mathfrak{F}}$: $Z \longrightarrow Y$ by $i'_{\mathfrak{F}}(n) = n\mathfrak{P}$. Since \mathfrak{G} , $\mathfrak{G}_{\mathfrak{F}}$, $Y_{\mathfrak{v}}$, and $Z\mathfrak{P}$ satisfy the the conditions of semi-local theory, we have

$$\hat{H}^{n}$$
 (\mathfrak{G} , $X \otimes Y$) $\cong \sum_{\mathfrak{v}} \hat{H}^{n}$ (\mathfrak{G} , $X \otimes Y_{\mathfrak{v}}$)
$$\cong \sum_{\mathfrak{v}} \hat{H}^{n}$$
 ($\mathfrak{G}_{\mathfrak{V}}$, X).

Therefore we have the following

Proposition 2. \hat{H}^n (\mathfrak{G} , $X \otimes Y$) $= \sum_{\mathfrak{g}} \hat{H}^n$ ($\mathfrak{G}_{\mathfrak{P}}$, X) for every integers n.

2.6 Using these propositions, we have the following

Proposition 3. The following diagram is commutative:

The following alogs and is commutative:
$$\sum_{v} \hat{H}^{n}(\mathfrak{G}_{\mathfrak{P}}, X) \xrightarrow{\underline{i}} \hat{H}^{n}(\mathfrak{G}, X \otimes Y)$$

$$\downarrow \sum_{v} \bigcup_{\sigma} \bigcup_{\sigma} \bigcup_{\sigma} \bigcup_{\sigma} \bigcup_{\sigma} \widehat{H}^{n+2}(\mathfrak{G}_{\mathfrak{P}}, T_{K_{\mathfrak{P}}}) \xrightarrow{\underline{i}} \hat{H}^{n+2}(\mathfrak{G}, T_{A_{K}})$$

Proof. The top horizontal isomorphism i^\prime is induced by the maps

$$\hat{H}^n(\mathfrak{G}_{\mathfrak{P}}, X) \xrightarrow{\operatorname{cor}(1 \otimes i'_{\mathfrak{P}})} \hat{H}^n(\mathfrak{G}, X \otimes Y),$$

and the bottom horizontal isomorphism i is induced by the maps

$$\hat{H}^{n+2}(\mathfrak{G}_{\mathfrak{P}}, T_{K\mathfrak{P}}) \xrightarrow{cor(1 \otimes i_{\mathfrak{P}})} \hat{H}^{n+2}(\mathfrak{G}, T_{A_{K}}).$$

By the fundamental relation between corestriction and cup product, we have

$$\begin{array}{ll} a_2 \ \cup (cor(1 \otimes i_{\,\,\sharp}') \ \xi) \ = cor(res \ a_2 \cup (1 \otimes i_{\,\,\sharp}') \ \xi) \\ = cor(j_{\,\,\sharp} \cdot res \ a_2 \cup \xi) = cor(i_{\,\,\sharp} \, \alpha_{\,\sharp} \cup \xi) \\ = cor(1 \otimes i_{\,\,\sharp}) \, (\alpha_{\,\sharp} \cup \xi), \end{array}$$

where $\xi \in \hat{H}^n(\mathfrak{G}_{\mathfrak{P}}, X)$, and $j_{\mathfrak{P}}^{(n)}$ is the projection $Hom(Y, X) \longrightarrow X$ defined by $j_{\mathfrak{P}}(f) = f(\mathfrak{P})$ for $\mathfrak{P} \in \mathfrak{S}$. Therefore we have our proposition.

^(*) By Tate's paper [8], j \$\pi\$ has the property j \$\pi(res \alpha_2) = i\$\pi \alpha_1\$.

§3. HASSE'S NORM THEOREM of TORI

We consider the following exact sequence of &-modules

$$0 \longrightarrow T_{\kappa} \xrightarrow{i} T_{A\kappa} \xrightarrow{j} C_{\kappa}(T) \longrightarrow 0$$

Passing to cohomology groups, we have the exact sequence

Proposition 4. The following diagram is commutative

$$\sum_{\nu} \hat{H}^{n} (\mathfrak{G}_{\mathfrak{P}}, X) \xrightarrow{\sum_{\mathfrak{P}} \alpha_{\mathfrak{P}}} \sum_{\nu} \hat{H}^{n+2} (\mathfrak{G}_{\mathfrak{P}}, T_{K_{\mathfrak{P}}}) \xrightarrow{\sim} \hat{H}^{n+2} (\mathfrak{G}, T_{A_{K}})
\downarrow \sum_{\nu} \zeta_{\mathfrak{P}}
\hat{H}^{n} (\mathfrak{G}, X) \xrightarrow{\cup \alpha_{1}} \hat{H}^{n+2} (\mathfrak{G}, C_{K}(T))$$

PROOF. By virtue of Tate's commutative diagram 2.2 and proposition 3, we have the following commutative diagram

$$\sum_{\nu} \xi_{\nu} : \sum_{\nu} \hat{H}^{n} (\mathfrak{G}_{\nu}, X) \longrightarrow \hat{H}^{n} (\mathfrak{G}, X \otimes Y) \longrightarrow \hat{H}^{n} (\mathfrak{G}, X)$$

$$\downarrow \sum_{\nu} \alpha_{\nu} \qquad \qquad \downarrow \cup \alpha_{2} \qquad \qquad \downarrow \cup \alpha_{1}$$

$$\sum_{\nu} \hat{H}^{n+2} (\mathfrak{G}_{\nu}, T_{K_{\nu}}) \longrightarrow \hat{H}^{n+2} (\mathfrak{G}, T_{A_{K}}) \longrightarrow \hat{H}^{n+2} (\mathfrak{G}, C_{K}(T))$$

This proves the proposition

Denote by $\tilde{N}(T) = T_k \cap (\bigcap N_{K_{\eta_i}}/k_{\nu}T_{K_{\eta_i}})$ the subgroup of T_k consisting of elements which are local norm from T_K at every places of k, where T_k is the group of k-rational points of T. Then, as our main result, we have the generalization of Hasse's norm theorem to the case of an algebraic torus.

THEOREM. Let F be the subgroup of $\hat{H}^{-3}(\mathfrak{G}, X)$ generated by $\zeta_{\mathfrak{P}}(\hat{H}^{3}(\mathfrak{G}_{\mathfrak{P}}, X))$ for every \mathfrak{P} . Then we have an isomorphism

$$\tilde{N}(T)/N_{K/k}$$
 $T_K \cong \hat{H}^{-3}$ (§, X)/F.

PROOF. By virtue of proposition 4, we have

$$\begin{split} \tilde{N}(T)/N_{K/k} \ T_K &= Ker(i^*) \\ &\cong \hat{H}^{-1}\left(\mathfrak{G}, \ C_K(T)\right)/j^*(\hat{H}^{-1}\left(\mathfrak{G}, \ T_{A_K}\right)\right) \\ &\simeq \hat{H}^{-3}\left(\mathfrak{G}, \ X\right)/F \end{split}$$

Corollary ([5]). If K/k is cyclic extension, we have $\tilde{N}(T) = N_{K/k} T_K$.

PROOF. By virtue of Kneser's paper (3), there is, for every integers n, a canonical injection

$$\hat{H}^n(\mathfrak{G}, T_K) \longrightarrow \sum_{\mathfrak{g}} \hat{H}^n(\mathfrak{G}_{\mathfrak{g}}, T_{K_{\mathfrak{g}}}).$$

Therefore we have $Ker(i^*) = 0$ by proposition 1.

§4. APPLICATION TO NON-GALOIS EXTENSIONS

In this section, we give Hasse's norm theorem to the case of non-Galois extensions using above commutative diagram for Tasaka's special tori[8].

4.1 Let L be a separable extension of k and K a finite Galois extension of k containing L. We denote by \mathfrak{G} and \mathfrak{H} the Galois group of K/k and K/L, respectively. Let $\mathfrak{G} = \bigcup_{K} g\mathfrak{H}$ be a left coset decomposition. We consider the following left \mathfrak{G} -modules

$$\Lambda = Z(\mathfrak{G}/\mathfrak{H}), R = \Lambda/Zu,$$

where Z [$\mathfrak{G}/\mathfrak{H}$] = $\sum_a Za$, $a=g\mathfrak{H}$, and $u=\sum_a a$. To the Z-free \mathfrak{G} -module R, there is a corresponding torus T which the module R is the character module Hom (T, G_m). Then T. Tasaka [8] proved the following isomorphisms

$$\hat{H}^1(\mathfrak{G}, T_K) \cong k^*/N_{L/k} L^*,$$

$$\hat{H}^1$$
 (\mathfrak{G} , T_{A_K}) $\cong J_k/N_{L/k} J_L$,

where J_k and J_L are the idele groups of k and L, respectively.

Now we consider the exact sequence of G-modules:

$$0 \longrightarrow T_{\Lambda} \xrightarrow{i} T_{\Lambda_{K}} \xrightarrow{j} C_{K}(T) \longrightarrow 0$$

Passing to cohomology groups, we obtain the following exact sequence:

By virtue of the commutative diagram of proposition 4 and above isomorphisms, we have the following

Theorem. Let $\tilde{N}(k)$ be the subgroup of the multiplicative group k^{\times} of k consisting of elements which are local norm from L at every places of k. Then we have an isomorphism

$$\tilde{N}(k)/N_{L/k}L^* \cong \hat{H}^{-2}(\mathfrak{G}, X)/F.$$

where F denotes the subgroup of $\hat{H}^{-2}(\mathfrak{G},X)$ generated by $\zeta_{\mathfrak{P}}(\hat{H}^{-2}(\mathfrak{G}_{\mathfrak{P}},X))$ for every \mathfrak{P} .

4.2 Using above theorem, we give an example such that Hasse's norm theorem is valid [8]. Let L be a separable non-cyclic cubic extension of k, and $\mathfrak{G} = \{\sigma^3 = \tau^2 = 1, \tau^{-1} \sigma \tau = \sigma^2\}$ the Galois group of the Galois extension K/k. We consider a two-dimensional torus

$$T = \{t \in R_{K/k} (G_m) \mid t^{1+\sigma+\sigma^2} = 1, t^r = t\},\$$

where $R_{K/k}(G_m)$ donotes the algebraic group defined over k obtained by restricting the field of definition K to k. By [10], we have $\hat{H}^{-2}(\mathfrak{G}, X) = 0$, and hence we obtain Hasse's norm theorem for L/k.

REFERENCES

- [1] E. ARTIN AND J. TATE, Class field theory, Benjamin, 1967.
- (2) C. Chevalley, Class field theory, Nagoya, 1953-54.
- (3) M. KNESER, Lecture on Galois cohomology of classical groups, Tata Inst. Fund. Res., Bombay,

1969.

190

- [4] T. Ono, Arithmetic of algebraic tori, Ann. of Math., 74(1961), 101-139.
- [5] T. Ono, On the Tamagawa number of algebraic tori, Ann. of Math., 78(1963), 47-74.
- [6] J.-P. SERRE, Corps locaux, Hermann Paris, 1962.
- [7] T. TASAKA, On the second cohomology groups of the fundamental groups of simple algebraic groups over perfect fields, J. Math. Soc. Japan, 21(1969), 244-258.
- [8] T. TASAKA, Remarks on the validity of Hasse's norm theorem, J. Math. Soc. Japan, 22(1970), 330-341.
- [9] J. TATE, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J., 27(1966), 709-719.
- [11] V. E. VOSKRESENSKII, On two-dimensional algebraic tori, Amer. Math. Soc. Transl., 73(1968), 190-195.